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BSTRACT

 

All cells are subject to physical forces by virtue of their
position in a dynamically changing environment. This review
outlines the various putative ‘mechanosensors’, or sensors of
pressure cells possess, and discusses in particular the role
stretch-activated membrane channels play in pressure recog-
nition and transduction. The widespread occurrence of these
channels is discussed and these ‘mechanosensors’ are related
to pressure-related diseases, in particular, glaucoma.
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I

 

NTRODUCTION

 

Cells are continually exposed to external physical forces
such as pressure, shear, flow, stretch and compression with
which they must be able to cope. Other cellular stressors
arise during growth, migration, contraction and division. It
is part of normal physiology to detect and adapt to these
everyday stresses. In some instances, cellular coping mecha-
nisms become overwhelmed and cell death may ensue. We
aim to outline the various ‘mechanosensors’, or cellular
sensors of mechanical stress, that cells possess and to discuss
in particular the possible role that stretch-activated mem-
brane channels play in pressure recognition and intracellular
relay of this message in the form of generating an electrical
response or a flux of signal ions.

In the eye, all tissues are continuously subject to varia-
tions in intraocular pressure. Intraocular pressure plays an
essential role in maintaining the shape of the eyeball and the
relative positions of the eye’s refractive and photoreceptor
surfaces, as well as influencing ocular perfusion pressure.
The response of cells in the eye to pressure can be physio-
logical or pathological. Elevated pressure can cause corneal
oedema, iris ischaemia, changes in the trabecular mesh-
work,

 

1,2

 

 lens opacity and glaucomflecken,

 

3

 

 and can affect

the retinal circulation.

 

4,5

 

 Elevated intraocular pressure in
glaucoma has been linked to retinal ganglion cell death,
altered neural axoplasmic flow and availability of trophic
factors, deformation of the optic nerve’s lamina cribrosa,
astroglial changes and generation of toxic intermediates.

 

6,7

 

The eye is not alone in having to cope with physical
forces. Many of our organ systems such as the brain, spinal
cord, bladder and joints are also subject to mechanical forces,
which can exceed the normal range of physiological response
of each organ system. We have coined an umbrella term for
this group of conditions exposed to excessive or inordinate
physical forces, and named them the ‘baropathies’. For
example, the brain is bathed in cerebrospinal fluid, and
increased production or reduced resorption of this fluid can
lead to raised intracranial pressure causing gross anatomical
deformity such as hydrocephalus and tonsillar herniation, as
well as changes at the cellular level due to the direct effect
of pressure on neural tissue. This situation is not unlike that
occurring in glaucoma. Other examples linked to exposure
to excessive mechanical force such as pressure or com-
pression include peripheral nerve entrapments, obstructive
nephropathy, hypertensive hypertrophic cardiomyopathy,
hypertensive glomerulosclerosis, compression vertebral
fractures and disc herniation.

Ocular cells are not unique in facing such challenges. All
cells must face physical forces by virtue of their position
within a larger mechanically active environment. For exam-
ple, blood vessel endothelium is subject to shear, stretch and
tension; striated skeletal muscle is under tension, compres-
sion and shear as sarcomeres contract and actin and myosin
filaments glide over each other; and skin and mucosal
epithelium are continually stretched.

All cells face physical forces in the environments in
which they live. These forces must be sensed and responded
to. The sensing of physical forces by cells is referred to as
‘mechanosensitivity’. Conversion of mechanical sensation
into intracellular signals and molecular changes that ultimately
affect cellular behaviour is called ‘mechanotransduction’.
Cells respond to stress by changing their morphologic
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appearance or alignment,

 

8–11

 

 enhancing their production of
second messengers via intracellular signalling,

 

12–16

 

 or indirectly
by affecting gene or protein expression.

 

2,13,17–21

 

 Research
continues to try to identify and better define the nature of
cellular ‘mechanosensors’, the molecular identity of these
sensors, what signals these sensors generate, mechanisms of
signal release and the ensuing biochemical cascade of events
resulting in the observed changes in cellular morphology
and behaviour. Implicated in the mechanosensing process
are mechanically gated ion channels, plasma membrane-
bound enzymes such as phospholipase A

 

2

 

 and phospholi-
pase C, and the cytoskeleton complex with cell–cell and
cell–matrix adhesions, which include proteins such as
cadherins, selectins and integrins.

 

22

 

 It seems possible that
cells have at their disposal not one but an array of tools to
deal with the physical forces they must contend with.

This perspective aims to review the possible role of
stretch-activated membrane channels (SACs) in mechano-
sensation and transduction, and relate this to the eye and
the pressure-related disease of glaucoma.

 

S

 

TRETCH

 

-

 

ACTIVATED

 

 

 

CHANNELS

 

The concept of mechanosensitive ion channels 
and their discovery across nature

 

Mechanosensitive channels or SACs, which are channels
gated to respond to forces acting at the plasma membrane,
were first postulated to exist in excitable structures such as
muscle spindles, pacinian corpuscles and joint receptors.

 

23–25

 

However, the more widespread discovery of such mechano-
sensitive channels in ordinary cells came with the advent of
patch clamping by Neher and Sakmann.

 

25

 

 Patch clamping
allows the recording of ionic changes arising from the appli-
cation of a known amount of tension or stretch to a patch of
cell membrane. It has proved an invaluable tool in under-
standing the pathophysiological basis of diseases in which
abnormal ion channels are implicated such as in cystic
fibrosis, epilepsy and Lambert–Eatons disease.

 

26,27

 

Stretch-activated channels were subsequently discovered
by Guharay and Sachs, who first noted that channel activity
increased with suction while trying to form patch clamp
seals in cultured chick skeletal muscle.

 

23

 

 Almost simultane-
ously, Brehm 

 

et al

 

. reported a similar phenomenon in embry-
onic 

 

Xenopus

 

 muscle.

 

25

 

 Using patch clamping, Guharay and
Sachs

 

23,28,29

 

 found that with SACs: (i) activation increased
with the square of applied pressure with channels opening
more frequently as suction increased; (ii) opening probabil-
ity increased with higher K+ and (iii) these channels
showed cation selective permeability with greatest conduct-
ance for potassium, then caesium, sodium and lithium, sug-
gesting a large aqueous pore.

 

28,29

 

 Their results support the
notion that cells respond to applied pressure in a definable
way and reproducibly. SACs were now thought to form part
of the explanation between cellular stress experienced and
reproducible cell excitation through a single conformation

change of the channel. However, membrane patch-clamping
studies need to be interpreted with the knowledge that the
suction used in patch clamping may itself alter membrane
geometry and the properties of membrane proteins, and that
channel properties can appear very different in whole cell
studies.

 

30

 

Since their original description in chick skeletal muscle,
different types of SACs have been identified across various
cell types ranging from prokaryotes, such as bacteria and
archea that possess cell walls, to eukaryotic cells that lack
cell walls but possess a cytoskeleton, such as unicellular
yeasts and multicellular animal cells. They have been iden-
tified in many mammalian organs, including the central and
peripheral nervous system, myocytes, blood vessel endothe-
lium, the renal tract, hair cells and fibroblasts.

 

31–35

 

Ionic selectivity of SACs

 

The most distinctive property of SACs is that their gating
is dependent on membrane tension. SACs, especially in
animal cells, appear to have many similarities,

 

36

 

 with most
appearing to be cation selective and permeable to several
cations,

 

24

 

 especially divalent cations, allowing significant
calcium influx during stretch. It has been postulated that
calcium may function as a second messenger for translating
mechanical perturbation into regulation of ion transport,

 

37

 

which may serve an important role in cell volume regulation.
Mechanogated SACs thus seem capable of mechanotrans-
duction: in some instances, transferring mechanical signals
into elevations in cytosolic calcium, thereby activating
membrane kinases to specifically phosphorylate other sig-
nalling molecules.

 

37

 

Potassium is the predominant intracellular cation. Intra-
cellular K+ concentration is approximately 140 mEq/L and
is important for maintaining the resting membrane potential
of cells. Excessive potassium efflux with accompanying
water efflux may serve as a trigger for cell shrinkage and
caspase activation leading to apoptosis.

 

38

 

 Indeed intracellu-
lar potassium and cell volume are noted to decrease early in
apoptosis prior to cellular fragmentation.

 

39,40

 

 Thus inordi-
nate potassium efflux mediated by SACs could serve as a
trigger for apoptotic cell death. Transmembrane potassium
movements are of course part of normal cell physiology and
do not normally cause cell death.

 

Activation and inhibition of SACs

 

More recent studies on SACs have shown that apart from
stretch or membrane tension, SACs such as TRAAK,

 

41–44

 

TREK-1

 

43,45

 

 and TREK-2

 

46

 

 appear to be activated by arachi-
donic acid, inhalational anaesthetics and intracellular acid-
osis, while TRAAK as well as other non-classified SACs are
inhibited by gadolinium or blockers of K

 

+

 

/Ca

 

2+

 

 channels in
human, animal and plant cells.

 

37,42,44,47–49

 

 Such SACs have
been found in cardiac tissue, especially atrial myocytes

 

47,50

 

and aortic endothelium,

 

51–53

 

 and may have baroreceptive
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properties;

 

54

 

 for instance, SACs in the aortic endothelium
are known to be up-regulated in experimental hypertension,
possibly as a compensatory mechanism.

 

51

 

 Interestingly,
gadolinium, glibenclamide, glipizide and tolbutamide, all K

 

+

 

ATP channel blockers,

 

47,55

 

 inhibit stretch-induced atrial
natiuretic peptide (ANP) secretion.

 

Pressures involved in activation of SACs

 

Patch-clamping studies have shown that negative pressures
of 200 mmHg are high enough to rupture membranes. Most
SACs are maximally activated at suction pressures of
10–100 mmHg (–10 to –110 mmHg).

 

24

 

 Evidence for the
cytoprotective role of these stretch-activated mechanosensi-
tive channels includes experiments on 

 

E. coli

 

, where SACs
identified as the MscL channel, open at pressures just under
those which would disrupt membranes.

 

22

 

In some cells possessing K

 

+

 

-selective SACs, stretch-
inactivated channels (SICs) have been found amongst SACs
(Fig. 1). They have been found in snail neurones, mam-
malian astrocytes, atrial myocytes, dystrophic muscle from
mdx mice and toad gastric smooth muscle, and possibly
many other cells.

 

24,31,37,56

 

 At low tensions when SACs are
closed, SICs have been shown to be open. As tension is
increased, SICs close followed by opening of SACs. These
SICs are assumed to maintain fine control over K

 

+

 

 at inter-
mediate membrane tensions.

 

24,31,37

 

 To our knowledge, no
attempt has been made to identify SICs in the eye or in
many other tissues.

 

S

 

TRETCH

 

-

 

ACTIVATED

 

 

 

CHANNELS

 

 

 

AND

 

 

 

THE

 

 

 

CYTOSKELETON

 

Stretch-activated channels do not work in isolation but may
be modulated by various cellular components like the SICs
previously mentioned as well as the contractile actin
cytoskeleton. The actin cytoskeleton attaches directly to
the cell membrane (Fig. 1), and its configuration and state of
contractility can affect membrane potential and channel
activity.

 

37

 

 Following the application of pressure or suction
on a membrane patch, the lag response noted in SAC
activation and deactivation suggests that there must be an
elastic component involved in tunnelling this membrane
tension towards the channels. This lag response is due to the
viscoelastic actin network relaxing with time, transferring
the membrane tension to the SACs.

 

23,25

 

Agents that disrupt actin filament organization, such as
the fungal toxin cytochalasin or colchicine, or agents that
reduce cytoskeletal tension, such as the ATPase inhibitor
N-ethylmaleimide, have been shown to increase stretch-
activated ion channel activity.

 

37,45,57

 

 In 

 

Lymnaea

 

 neurones,
depolymerization of the subcortical actin with cytochalasin
B, cytochalasin D or treatment with N-ethylmaleimide
enhances SAC activity;

 

57,58

 

 in cos-7 cells transfected with
either TRAAK or TREK-1 and in retinal bipolar neurones of
tiger salamander, cytochalasin-D reduces delay time in acti-
vation and also enhances peak amplitude of voltage gated
K

 

+

 

 channels.

 

42,45,59

 

 In chick skeletal muscle, cytochalasin-D
increases stretch sensitivity of SACs 30-fold

 

23

 

 and in vascu-
lar endothelium cytochalasin reduces the delay time and
shifts the open probability curve of SACs to lower pres-
sures.

 

31

 

 Colchicine has also been shown to enhance TRAAK
channel activity.

 

42

 

 However, phalloidin (a microfilament
toxin that stabilizes actin), neutralizes the increased stretch
sensitivity induced by cytochalasin.

 

29,59

 

 In excised patches
of cos-7 cells transfected with TRAAK and lacking connec-
tion to cytoskeletal filaments, the threshold for channel
activation is markedly reduced and channel activation is
greatly enhanced.

 

42

 

 These results strongly implicate the actin
cytoskeleton in modulating SAC activity and mechano-
sensitivity, by being responsible for the delay of channel
activation following stimulus and acting as a stabilizing or
restraining force on SAC activity.

 

O

 

THER

 

 

 

POTENTIALLY

 

 

 

RELEVANT

 

 

 

MECHANOSENSORS

 

Membrane-bound enzymes

 

Stretch-activated channels are not the sole mechanosensors;
more recently the interdependence of the plasma membrane
and cytoskeleton in adaptation to applied forces has been
recognized. Membrane bound enzymes and proteins such as
phospholipase A

 

2

 

, phospholipase C and tyrosine kinases
have also been implicated in mechanosensors: they respond
by increasing their activity, resulting in more phosphoryla-
tion.

 

12

 

 Numerous 

 

in vitro

 

 studies have demonstrated that

 

Figure 1.

 

Schematic diagram demonstrating mechanosensitive
structures.



 

Stretch-activated channels 213

membrane stretch (including by osmotic swelling) induces
release of prostaglandins and cyclic AMP.

 

13

 

 The proposed
chemical mediator cascade appears to be triggered by cell
membrane mechanical disruption exposing membrane
bound phospholipids to the hydrolytic activity of phosphol-
ipase A

 

2

 

.

 

13,22

 

 Alternatively, dynamic membrane changes may
directly activate phospholipase A

 

2,

 

 causing the release of
arachidonic acid, which is the substrate for prostaglandin
(PG) synthase. The rest of the cascade then involves PGE

 

2

 

synthesis, increased cAMP production and DNA synthesis.
Similarly, 

 

in vitro

 

 studies on stretched mesangial cells,
cardiac myocytes and foetal lungs as well as flow and shear
on human umbilical vein endothelial cells show activation of
phospholipase C, generating diacylglycerol (DAG) and the
ensuing molecules in the phosphatidylinositol path-
way.

 

12,13,22

 

 Evidence for tyrosine kinase’s involvement in
mechanotransduction includes experiments whereby pres-
sure in rat astrocytoma cells stimulated cell proliferation and
DNA synthesis (gliosis). This effect was blocked by geni-
stein, a tyrosine kinase inhibitor, and not by inhibitors of
stretch-activated ion channels or protein kinase inhibitors.

 

60

 

The cytoskeleton

 

The tensegrity model proposed and described by Ingber

 

61

 

puts the individual proposed molecular mediators of mechano-
transduction into context as molecules that are physically
immobilized on the cytoskeleton, which itself is coupled to

mechanotransduction and highly sensitive to its environment.
Amongst its numerous roles, the cytoskeleton provides
underlying support to the plasma membrane and forms part
of the linkage to the extracellular matrix.

 

61

 

 In addition to
this, the cytoskeleton is capable of reacting and rearranging
to the changing cellular environment.

 

13,22

 

 The actin-rich
cortical cytoskeleton allows cells to maintain excessive
membrane area by means of microvillae, membrane folds
and invaginations, thereby serving as a membrane reserve
that may protect the membrane from sudden changes in
membrane tension that could otherwise rupture the cell.

 

36

 

As previously described, the cytoskeleton also regulates the
activity of mechanically gated ion channels by tonically
repressing their activity. Physical stress has been shown to
induce changes in actin polymerization and this has been
speculated to help mediate mechanotransduction by provid-
ing additional sites for actin–myosin interaction, thereby
enhancing force generation in response to increased intra-
vascular pressure.

 

62,63

 

Integrins

 

Integrins are transmembrane proteins that reside in the
plasma membrane, linking together components of the cyto-
skeleton such as actin and intermediate filaments to the
extracellular matrix. They are putatively amongst the first
subcellular components to sense mechanical stresses via the
extracellular matrix and can mediate signal transduction

 

Table 1.

 

Summary of studies localizing stretch-activated channels to the eye and nervous system

Channel name Ion selectivity Where it has been located References

TRAAK K

 

+

 

 > Rb

 

+

 

Retina, brain (basal ganglion-caudate and putamen,
amygdala, habenula, thalamus, cerebellar cortex, 
cerbral cortex, hippocampus, nucleus accumbens,
olfactory bulb, various brainstem nuclei), spinal cord,
dorsal root ganglion, sciatic nerve

 

34,35,41,42,44,50,66,69,70,79,88,89

 

TREK-1 K

 

+

 

Brain (cerebral cortex, hippocampus, hypothalamus,
thalamus, septal region, corpus striatum, mesencephalon,
rhombencephalon, cerebellum, caudate, putamen,
olfactory bulb), spinal cord and dorsal root ganglion,
peripheral sensory neurones

 

34,35,41–43,45,50,69,79,90,91

 

TREK-2 K

 

+

 

Cerebrum, cerebellum, hippocampus, corpus callosum 
and  other deep cerebral and various brainstem nuclei,
basal ganglia

 

34,35,46,69,90

 

TREK-like K

 

+

 

Rat neurones

 

69

 

Unclassified Monovalent and 
divalent cations

Human retinal Müller glial cells

 

74

 

Unclassified K

 

+

 

Trabecular meshwork, cerebellar astrocytes

 

73,92

 

Unclassified K

 

+

 

Neonatal rat astrocytes, lymnacea neurone

 

57,93

 

Unclassified K

 

+

 

Choroid plexus epithelium, ventricular cells

 

31,33,37,94

 

Unclassified Cation Neuroblastoma cells

 

25,33,37

 

Unclassified Monovalent cations 
and Ca

 

2+

 

Dorsal root ganglia neurones

 

33,48,80

 

Unclassified K

 

+

 

 > Na+ Snail neurones 25

CAT-50 K+ > Rb+ > Cs+ > Na+ Frog lens epithelia-apical membrane 95–97

TRAAK, TWIK-related arachidonic acid – stimulated K+ channels; TREK, TWIK-related K+ channel.
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across the plasma membrane to the intracellular cytoskeleton
and to activate intracellular signalling pathways. Inhibition of
some integrins can affect mechanotransduction.12,49,61,64,65

POSSIBLE RELEVANCE OF STRETCH-ACTIVATED 
CHANNELS TO GLAUCOMA AND OTHER 
NEUROPATHIES

Studies in the last few years have localized TRAAK to the
retina (Table 1), on the cell bodies and axons of the retinal
ganglion cells as well as in the dendrites of amacrine cells
in the inner plexiform layer and on the outer segments of
photoreceptors.41,66 In vitro studies show that TRAAK, a
mechanogated K+ channel, is opened by membrane stretch,
stimulated by arachidonic acid, other naturally occurring
long-chained polyunsaturated free fatty acids, and alkali
conditions,41–44,67 and inhibited by gadolinium, amiloride
and high concentrations of barium.41–43,68,69 Immunohisto-
chemistry studies have shown TRAAK to be expressed on
the immortalized retinal ganglion cell line, RGC-5.70

TRAAK channels do not open at atmospheric pressure
but require pressures in the order of –25 to –50 mmHg to
induce half maximal channel opening.42,43 This is in the
range that is clinically relevant to glaucoma and in vitro
models of pressure-induced retinal ganglion cell loss.71 In
vitro experiments undertaken in our laboratory show that
arachidonic acid induces apoptosis in RGC-5 cells (a retinal
ganglion cell line) that can be attenuated by gadolinium or
elevated extracellular potassium (unpublished data). Taken
together, these findings suggest a role for the SAC
(TRAAK) in mediating RGC responses to pressure and in
cell survival. Another SAC, TREK-1, expresses higher levels
of mRNA in glaucomatous optic nerve head astrocytes
compared to non-glaucomatous eyes.72 Similar stretch-
activated K+ channels have been described in bovine trabec-
ular meshwork cells with similar pressures required for
channel opening.73 SACs have also been identified in human
Müller glial cells.74

It may be of interest that suction pressures required to open
and activate SACs24,42,43,45 are in the range of pressures seen
in clinical glaucoma and compression neuropathies. Normal
carpal tunnel pressure is in the order of 10–13 mmHg, but in
carpal tunnel syndrome it is in the order of 26–32 mmHg.75–78

Pressures in the order of 30 mmHg are reported in other
entrapment neuropathies.75–78 Although the mode of loss of
viability has not been shown to be through SACs, such chan-
nels have been found on peripheral neurones79 and dorsal root
ganglia.48,80 Experimental studies report that compressive
pressures of 30 mmHg or more inhibit fast axonal and retro-
grade transport in compression studies and induce morpho-
logical changes such as eccentric migration of the cell nucleus
and decreased nuclear to cytoplasmic ratio and dispersion of
Nissl substance.11 Pressures above 50 mmHg can threaten
neuronal viability.77 It certainly seems possible that SACs
have a role in transducing these elevated pressures to ulti-
mately influence cell behaviour.

EFFECTS OF PRESSURE ON CELLS IN THE EYE

Cells within the intraocular environment are continuously
exposed to variations in intraocular pressure and pressure
has varying effects on different cells in the eye that may or
may not involve SACs. In response to raised pressure,
human lamina cribrosa cells modulate production and secre-
tion of extracellular matrix macromolecules and elongate.81

Glial cells cocultured with retinal ganglion cells subjected to
raised hydrostatic pressure secreted more TNF-α and nitric
oxide.82 Cell lines derived from non-pigmented and pig-
mented ciliary epithelium, trabecular meshwork, retina and
lamina cribrosa exposed to elevated hydrostatic pressure
demonstrated morphological changes including taking on a
more rounded shape, redistribution of actin stress fibres and
retraction of processes. Additionally adenylyl cyclase activ-
ity increases were seen in all cell lines.83

In cultured trabecular meshwork cells, high conductance
Ca2+-activated K+ channels are activated in response to
membrane stretch and hypotonic shock,73 prostaglandin
F2α production is increased in response to cyclic mechani-
cal stretch,16 and intracellular calcium concentrations15 and
nitric oxide levels14 are elevated in response to elevated
hydraulic pressures. Stretch decreases levels of alpha B-
crystallin expression in human trabecular meshwork cells,
which may have a role in actin rearrangement during
stretch.84 In another study, stretched human trabecular
meshwork cells elongated and rearranged their actin fila-
ment network, and decreased tyrosine phosphorylation and
MAPK activity while increasing paxillin tyrosine phosphory-
lation.85 Stretched trabecular meshwork cells up-regulate
genes controlling vascular permeability, secretion, extra-
cellular matrix remodelling, cytoskeleton reorganization
and reactive oxygen species scavenging.17 Myocillin is
up-regulated after mechanical stretch of the trabecular
meshwork.18,19

Mechanosensors are thought to be present at the scleral
spur86 and anterior uvea87 and are postulated to exist as
afferent mechanoreceptors. Pressure induces a multitude of
changes and how cells recognize forces and respond is still
an area of investigation.

CONCLUSION

Cells by virtue of their position within a larger mechanically
active environment are subject to all forms of pressure from
both inside their own membrane and externally. These include
membrane forces such as: stretch, when intracellular pres-
sure may rise, for instance in hypo-osmotic states or due to
falling extracellular pressure; compression, when extra-
cellular pressure is elevated; flow; and shear. Importantly,
Guharay and Sachs demonstrated that increasing negative
or positive pressure on a membrane patch induced activa-
tion of SACs.23,25,28

Mechanically gated channels are important components
of the cell’s mechanosensory and transduction apparatus.
SACs, the actin cytoskeleton and other cytoskeletal
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connections each play a part in sensing pressure and sending
on appropriate chemical signals to ultimately induce cellular
responses. Our hypothesis is that SACs, together with these
other components of the cell’s putative mechanosensory
apparatus, play a vital role in helping transduce and modu-
late cell responses to physical forces. Together, they likely
help the cell protect itself from injury.

Knowing how these cellular mechanosensory elements
work is pertinent to understanding how cells respond to
mechanical forces in health and disease. Where excessive
mechanical force is implicated in disease, such as pressure
in glaucoma, such an understanding could provide fresh
insights into pathogenesis and even a rational basis for new
treatments.
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